Apa pengertian fungsi? Jika sobat hitung memiliki bentuk persamaan y = f(X) bisa dikatakan sebagai y merupakan fungsi dari Xjika ada hubungannya antara variabel x dan variabel y sedemikian serupa sehingga untuk setiap x didapat tepat sebuah y. Bingung ya? Gampangnya fungsi adalah hubungan yang menerjemahkan hubungan antara x dengan y. Ia menghubungkan setiap x tepat dengan setiap y. Jika hubungannya melibatkan operasi kuadrat, maka disebut fungsi kuadrat.
Nilai fungsional y = f (X) jika X = X1 Lay yer yief dan1 = f (X1). Jadi X1 dan y1 merupakan pasangan titik koordinat yang menyusun grafik fungsi y = f(X).
Fungsi Kuadrat
Bentuk Umum dari fungsi kuadrat adalah
F(X) = aX2 + bX + C atau
y = aX2 + bX + c
Selain penulisan fungsi kuadrat seperti di atas, ada penulisan lain dalam bentuk
- Formulir Pemetaan: R -> R
x -> ax2 + bx + c, a, b, c ∈ R, a ≠ 0 - B. Bentuk kumpulan {(x, y) i y = aX2 + bX + C; A, B, C ∈ Real A ≠ 0
Grafik Fungsi Kuadrat
Di SMA sering sobat jumpai soal tentang grafik fungsi kuadrat. Biasanya pertanyaan berkutat tentang nilai ekstrem, titik puncak, bagaiman gambar grafiknya, sumbu simetri, dan lain-lain. Yang namanya grafik fungsi kuadrat adalah grafik dengan bentuk parabola (seperti gunung atau lembah). Untuk tahu bagaimana bentuk grafik dari suatu fungsi kuadrat, sobat harus memperhatikan beberapa sifat penting dari fungsi kuadrat di bawah ini.
- Hubungan dengan sumbu y (jika x=0)
Jika dari persamaan y = aX2 + bX + c kita masukkan x = 0 maka akan ketemu y = c. Jadi titik potong parabola dengan sumbu y adalah titik dengan koordinat (0,c).
- Hubungan dengan sumbu x (y=0)
Dari bentuk aX2 + bX + c jika y = 0 maka akan menghasilkan persamaan kuadrat aX2 + bX + c = 0, dari persamaan ini di dapat nilai D (diskriminan) D = b2-4ac.
- Jika nilai D > 0, maka parabola memotong sumbu x di dua titik yang berbeda.
- Jika nilai D = 0, maka parabola meotong sumbu x di satu titik atau bisa dikatakan parabola (grafik fungsi kuadrat) menyinggung sumbu x (titik puncak)
- Jika D < 0, maka parabola tidak memotong di sumbu x (melayang di atas atau di bawah sumbu x)
- dalam hal D < 0 dan a > 0 maka f(X) = aX2 + bX + c, akan menghasilkan nilai selalu positif (melayang di atas sumbu x)
- dalam hal D < 0 dan a < 0 maka f(X) = aX2 + bX + c, akan menghasilkan nilai selalu negatif (melayang di bawah sumbu x)
- Harga Ekstrem dan Titik Puncak
rumus menentukan harga ekstrem
(xp, yp) = (-b/2a, d/4a)
untuk mengetahui apakah itu titik minimum atau maksimum tergantung dari nilai a. Jika a>0 maka maksimum, jika a<0 maka nilai minimum.
Titik puncak dari fungsi kuadrat f(X) = aX2 + bX + c adalah titik yang diperoleh dengan mengambil koordinat dari pasangan nilai ekstrem dengan absisnya. Koordinat puncak dari fungsi kuadrat adalah titik P (-b/2a, D/4a). Titik P dinamakan maksimum jika a > 0 dan dinamakan titik minimum jika a < 0.
- Sumbu Simetri
Sumbu simetri merupakan garis yang ditarik dari nilai x titik ekstrem sejajar dengan sumbu y yang membelah parabola menjadi 2 bagian yang sama besar.
Persamaan untuk sumbu simetris adalah X = -B/2A
Berita Olahraga
Berita Olahraga
News
Berita Terkini
Berita Terbaru
Berita Teknologi
Seputar Teknologi
Drama Korea
Resep Masakan
Pendidikan
Berita Terbaru
Berita Terbaru
Berita Terbaru
Situs berita olahraga khusus sepak bola adalah platform digital yang fokus menyajikan informasi, berita, dan analisis terkait dunia sepak bola. Sering menyajikan liputan mendalam tentang liga-liga utama dunia seperti Liga Inggris, La Liga, Serie A, Bundesliga, dan kompetisi internasional seperti Liga Champions serta Piala Dunia. Anda juga bisa menemukan opini ahli, highlight video, hingga berita terkini mengenai perkembangan dalam sepak bola.